Enabling Better Green Supply Chain Management

H. Scott Matthews Carnegie Mellon University

Why Care?
* Policies affecting business on multiple levels:

* Direct cost increases
* Indirect (supply chain) costs
* Consumer/investor perception/activism
* Compliance (govt, retail) -> labels?

* Large data demands; both inside and outside companies' organizational boundaries

What tools are available?

*** "Carbon footprint" tools**

Scope 3: Supply Chain Emissions, Air Travel, Waste, Use

> Scope 2: Purchased Electricity

Scope 1: Stationary Combustion

Combustion (Company Fleets)

* Life Cycle Assessment

NSTITUT

Protocol Boundaries for Entities CCAR, WRI/WBCSD, Others

* Scope 1 - Direct Emissions (Fleet, Fuels)
* Scope 2 - Purchased Energy Emissions
* Scope 3 - Indirect (supply chain) Emissions

* These may / not include non-CO2 GHGs

What's the Difference?

*** Consumer Goods have** large shares of emissions in supply chain * "Footprint" can't adequately measure risk

Source: EIO-LCA model, http://www.eiolca.net

75% OF PRODUCTS HAVE MORE THAN 75% OF EMISSIONS IN SCOPE 3

Life Cycle (supply chain) Approach * Two main schools: Top-down vs. Bottom-up

Method	Resources	Specificity	Completeness	Functional Unit
Process LCA	Substantial; data intensive	High; Product- specific	Cut-off Issues	Mass or product level (kg, units, etc)
EIO-LCA (top-down)	Relatively small	Low; Average Sector Production	Complete by definition	Economic Value (\$, etc)

Economic Input-Output Life Cycle Assessment (EIO-LCA) * Developed CMU 1995 - full supply chain * Available on Internet (www.eiolca.net) * First free LCA tool, 1 million uses to date * Actively used by companies * Data and model - continual development ***** Renewed interest - carbon management reen Desig

Hybrid Assessment: Best of Both * EIO-LCA fast and complete, but averaged * Process LCA more exact but takes large amounts of \$ and time * Can combine best of both methods to achieve more exact but still complete assessments ***** What data types are available?

Data for Hybrid Assessment * Emissions generally estimated from energy * Often this information in ERP systems

Name	Level of analysis	Units	Product or Facility
Primary Facility Level Data	Facility	CO ₂ e/yr	Facility-level or product-level
Secondary LCI data	Process or Product	CO ₂ e/kg (usually)	Product-level (usually)
Registry-type Data	Facility or group of facilities	CO ₂ e/yr	Facility-level
EIO-LCA (top- down)	Group of Industries	CO2e/\$/yr	supply-chain of facilities

Overall Goal

Facility Energy -> GHG data

GHG data from suppliers

Average data from EIO-LCA

Available specific data

Supply Chain GHG Emissions Estimate

Eco-labels (embodied GHG)

"Carbon Risk" Estimate Supply Chain/Design Decisions

Relevance of Uncertainty * Allocation issues (facility vs. product) * Determining necessary precision * Linking uncertainty to results - visualization ***** Tools to identify most uncertain parts? * "Labels" ignoring uncertainty * Developing framework for IT industry

Thank You Questions?

hsm@cmu.edu

